(a^2+64)x(a^2+144)=1200

Simple and best practice solution for (a^2+64)x(a^2+144)=1200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (a^2+64)x(a^2+144)=1200 equation:


Simplifying
(a2 + 64) * x(a2 + 144) = 1200

Reorder the terms:
(64 + a2) * x(a2 + 144) = 1200

Reorder the terms:
(64 + a2) * x(144 + a2) = 1200

Reorder the terms for easier multiplication:
x(64 + a2)(144 + a2) = 1200

Multiply (64 + a2) * (144 + a2)
x(64(144 + a2) + a2(144 + a2)) = 1200
x((144 * 64 + a2 * 64) + a2(144 + a2)) = 1200
x((9216 + 64a2) + a2(144 + a2)) = 1200
x(9216 + 64a2 + (144 * a2 + a2 * a2)) = 1200
x(9216 + 64a2 + (144a2 + a4)) = 1200

Combine like terms: 64a2 + 144a2 = 208a2
x(9216 + 208a2 + a4) = 1200
(9216 * x + 208a2 * x + a4 * x) = 1200

Reorder the terms:
(208a2x + a4x + 9216x) = 1200
(208a2x + a4x + 9216x) = 1200

Solving
208a2x + a4x + 9216x = 1200

Solving for variable 'a'.

Reorder the terms:
-1200 + 208a2x + a4x + 9216x = 1200 + -1200

Combine like terms: 1200 + -1200 = 0
-1200 + 208a2x + a4x + 9216x = 0

The solution to this equation could not be determined.

See similar equations:

| (i-3)(3i+3)= | | X=2x^2+7x+5 | | F=2x^2+7x+5 | | F(x)=2x^2+7x+5 | | -4.2+6.5= | | -10+(-23)+18= | | -21+10= | | -3(n-7)+3(n-8)=n-3+8+n | | 3(2x+4x)=12x+3x | | (2x)+(x)=12 | | -7/8=-21 | | 5(x+4)-x(2x-3)=0 | | -3(5+7x)=-8(3x-3) | | 7(x+12)=x+4-8x | | 9xy/35*49/15xy | | 11y+17=50 | | -37-7m=6(3m-2) | | 8n-10=30 | | 5(y+8x)=6+2xy | | 2x+2=2x+32 | | 3(r+2)=14+2r | | X+2=x+32 | | x=275+-0.3333333333y | | 50=30-15-6-0 | | 6xX=42 | | 6x+2y=1650 | | 12-12c=9-15c+3c | | y/4x | | 20(x)+18(y)=348 | | x-3x-5=49 | | 2y/4x | | -4x+30=-3x+19 |

Equations solver categories